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We establish a conceptual relation between the fluctuations of the local density of states �LDOS� and the
intensity correlations in speckle patterns resulting from the multiple scattering of waves in random media. We
show that among the known types of speckle correlations �C1, C2, C3, and C0� only C0 contributes to LDOS
fluctuations in the infinite medium. We propose to exploit the equivalence of LDOS fluctuations and the C0

intensity correlation as a “selection rule” for scattering processes contributing to C0.
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The local density of states �LDOS� of waves ��r ,�� is an
important concept that regularly turns up in discussions of
waves in the interaction with media. The number
��r ,��dV d� represents the local weight of all eigenfunc-
tions in the frequency interval d� around frequency � inside
a small volume dV around position r. In homogeneous media
it is independent of r and just equal to the “density of states
per unit volume” found in all textbooks. Near boundaries the
LDOS exhibits Friedel-type oscillations on the scale of the
wavelength �1�. In band-gap materials the LDOS was shown
to govern the spontaneous emission of an atom at position r
�2,3�. In random media, where wave propagation is diffuse,
the equipartition principle attributes an average local energy
density of radiation that is directly proportional to the
ensemble-averaged LDOS. This apparently simple principle
can have surprising consequences, for instance, when waves
with different velocities participate in the diffusion process,
as is the case for seismic waves �4�. For disordered band-gap
materials �5� the equipartition principle is surprising in the
sense that the multiple scattering process, with a typical
length scale equal to the mean free path �, that is, in general,
much larger than the wavelength or the lattice constant, dis-
tributes energy with subwavelength structure. From a funda-
mental point of view, the LDOS is also the crucial quantity in
the recent studies on “passive imaging” �6�. Its basic prin-
ciple is that for a homogeneous distribution of sources—such
as noise—the field correlation function �with time and space�
is essentially proportional to the �Fourier transform of�
LDOS, and thus sensitive to local structure, random or not.

In random media the LDOS is a random quantity. Its sta-
tistical distribution has been studied previously within the
framework of the nonlinear sigma model �7,8�, random ma-
trix theory �9�, and the optimal fluctuation method �10�. The
purpose of this Rapid Communication is to establish a rela-
tion between the fluctuations of the LDOS—within the en-
semble of random realizations—and the intensity correla-
tions in speckle patterns. Several contributions to intensity
correlations have been identified. The “standard,” Gaussian
correlation C1 is the best known �11�, but non-Gaussian cor-

relations C2 and C3 have been predicted �12� and observed
�13,14�, mostly in the transmitted flux. Recently C0 has been
added �15,16�. The C0 correlation is caused by scatterers
close to either the receiver or the source and is, surprisingly,
of infinite spatial range. Contrary to the other correlations, C0
is nonuniversal and highly dependent on details of the scat-
terers, such as their phase function. The total transmission
coefficient is known to be dominated by C2, and the conduc-
tance by C3. Unfortunately, the basic observable variable
whose fluctuations are dominated by C0 has never been iden-
tified. This is perhaps why only one observation has been
reported so far, in the polarization correlation of microwaves
�14�.

The fluctuations of the LDOS can, in principle, be found
from the average �Bethe-Salpeter� two-particle Green’s func-
tion, but the diffusion approximation that is usually em-
ployed for this object �17� is not valid on length scales of the
order of the wavelength, which appear to give an important
contribution. Mirlin �8� noticed that in three dimensions �3D�
the result is dominated by nearby scattering and is of the
order 1 /k�, where k is the wave number and ��1/k is the
mean free path. An exact calculation in the infinite medium
with Gaussian white-noise disorder gives

Var���r��
���r��2 = �4�

k
�21

2
��G�r,r�G*�r,r��c − Re�G2�r,r��c�

	 �4�

k
�21

2

4�

�

 dx

1 − cos�4kx�
�4�x�4 =

�

k�
. �1�

Here G�r ,r� is the Green’s function of the wave equation
describing the waves in the random medium. In the second
equality we are restricted to single scattering in the Born
approximation �see Fig. 1�a��. The value � /k� agrees exactly
with the one found for the C0 speckle correlation �lower right
diagram in Fig. 1�b�� �15�. Going beyond single scattering,
i.e., replacing the dotted lines in Fig. 1 by diffusion ladders,
yields small corrections �1/ �k��2 to both the variance of the
LDOS and C0. A deeper, generally valid relation between the
fluctuations of the LDOS and the C0 correlation is suggested
by the above observations. This is the principal subject of the
present work.

Let us consider the simplest model possible �scalar waves
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in an infinite random medium with white-noise disorder� and
leave more complicated situations for future work. Our as-
sumptions are as follows. �1� At long distances, the diffusion
approximation for the correlation �G�r ,x�G*�r� ,x��� of two
Green’s functions is valid. �2� The correlation
�I�r ,x�I�r� ,x��� of two intensities I�r ,x�= �G�r ,x��2 propa-
gating from the source r to the receiver x is composed of
terms belonging to only four different classes, referred to as
C1, C2, C3, and C0, distinguished by a different correlation
range. The first assumption excludes one- and two-
dimensional random media that are subject to localization
effects. We will thus concentrate on 3D random media. The
classification into C1, C2, C3, and C0 summarizes the out-
come of numerous theoretical approaches and experiments
�11–17,20,21�. The class C1 has a short-range correlation in
both the source positions r ,r� and the receiver positions x ,x�
�with a range at most equal to the mean free path�. C2 has
two parts. The first part has a long-range correlation �typi-
cally a power law� in source positions and short-range cor-
relations in receiver positions, and vice versa for the second
part. C3 has long-range correlation in both the source and the
receiver positions. The class of terms described by C0 exhib-
its an infinite range correlation in either the source or the
receiver positions �15,16�. The classes C2, C3, and C0 imply
non-Gaussian statistics of the wave field. For weak disorder
�k��1� these statistics are Gaussian and C1 dominates.

The random dielectric constant is denoted by ��r�, and we
shall add a fictitious, homogeneous dissipation �a and later

consider �a↓0. The Green’s operator for scalar waves is
G�r ,p ,��= ���r�+ i�a��2 /c2−p2�−1. The resolvent identity
states that G−G*=−2i�a��2 /c2�GG*. In real space this trans-
lates to the identity

− Im G�r,r,�,�a = 0� =
�2

c2 lim
�a↓0

�a
 dx I�r,x� , �2�

where the integral extends over the whole space The inten-
sity I�r ,x� was defined in assumption �2� above. We recall
that the �radiation� LDOS ��r ,�� is equal to
−�� /�c2�Im G�r ,r ,�� �2�. Thus, Eq. �2� physically ex-
presses that for a homogeneous distribution of sources, the
local radiation density is directly proportional to the LDOS.
For brevity we shall drop the frequency reference. The sec-
ond moment of the LDOS can be expressed as

���r�2� =
�6

�2c8 lim
�a↓0

�a
2
 dx
 dx��I�r,x�I�r,x��� . �3�

Equation �3� establishes a conceptual relation between the
variance of the LDOS at r, Var���r��= ���r�2�− ���r��2,
given by its left-hand side, and intensity correlations in a
speckle pattern created by a point source at r �the integrand
of the right-hand side�. This facilitates a direct correspon-
dence between the various contributions to the LDOS vari-
ance and speckle correlations. We demonstrate in the Appen-
dix that, among the four classes of speckle correlations, only
C0 contributes to the LDOS variance, because of its infinite
range in the receiver positions x and x�. The others cancel
for different though fundamental reasons, such as current
conservation �18�.

We conclude that the normalized fluctuations of the
LDOS and the C0 speckle correlation are one and the same,

Var���r��
���r��2 = C0, �4�

and that observational attempts to confirm the existence of
C0 should focus on the LDOS, either probed by spontaneous
emission �2� or by using evanescent waves �19�. It follows
from our analysis that only correlations with infinite spatial
range contribute to Var���r��, and Eq. �4� might serve as a
definition for C0. Alternately, any nonzero variance of LDOS
implies the existence of spatial correlations of the intensity I
with infinite range.

Because C0 correlation is nonuniversal and sensitive to
the local, microscopic structure of the random medium, our
Eq. �4� implies that the fluctuations of the LDOS are nonuni-
versal too, contrary to the universality of conductive fluctua-
tions. In the context of imaging with noise �6� essentially
relying on the measurement of the LDOS, the equivalence of
the C0 correlation and the LDOS fluctuations implies that
only objects closer than a wavelength can affect the LDOS
and can thus be imaged “passively.”

The C0 correlation determines the variance of the LDOS
at a given frequency �, and it continues to do so in the
correlation of the LDOS at two frequencies differing by
some ���. We obtain ���r ,����r ,�+���c / ���r ,���2

�C0, independent of �. Similarly, if the disordered medium

FIG. 1. �a� Two-field intensity diagrams that give the leading
order to the variance of the LDOS in a random medium with Gauss-
ian uncorrelated disorder. �b� Typical four-field diagrams that con-
tribute to speckle correlations in a random medium. Solid and
dashed lines denote retarded and advanced Green’s functions, re-
spectively, shaded boxes are ladder propagators �L� and Hikami
boxes �H�, the dotted line with crosses denotes scattering of two
wave fields on the same heterogeneity. The variance of the LDOS
can be obtained by integrating over x and x�. Only the lower right
diagram yields a nonvanishing contribution to the variance of the
LDOS in the infinite medium.
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is not stationary, such as, e.g., a suspension of small particles
in Brownian motion, the LDOS will fluctuate in time. The
time correlation of these fluctuations, ���r , t���r , t
+���c / ���r , t��2, is again determined by C0. According to
Ref. �16�, C0��� decays as �−3/2 for large enough �. We con-
clude therefore that the LDOS exhibits long-range correla-
tions in time and infinite-range correlations in frequency.

To summarize, our main conclusion is that fluctuations in
the local density of states for waves in random media are
conceptually equal to the recently predicted C0 intensity cor-
relation, and not to the other three types of intensity correla-
tion. Crucial for this equivalence is the infinite spatial range
of C0. Observational evidence for C0 has been reported so far
only once, in the polarization of microwaves �14�, whereas
the other speckles are firmly established. In a finite medium
the intensity correlations C1,2,3 will emerge as extensive con-
tributions to the LDOS variance, vanishing in some way as
the medium scales upwards. With some minor modifications,
our main conclusion should hold for infinite 3D disordered
band-gap materials, where the LDOS is a much less trivial
quantity.

We thank M. Campillo, R. Maynard, and R. Weaver for
discussions.

APPENDIX

In this appendix we demonstrate that C1, C2, and C3 cor-
relation functions do not contribute to the fluctuations of the
LDOS in Eq. �3�, and that C0 gives the only nonvanishing
contribution. We restrict ourselves to the infinite, reciprocal
media where G�x ,r�=G�r ,x� and assume k��1.

We first consider Gaussian �C1� statistics according
to which �G�1�G*�2�G*�3�G�4��= �G�1�G*�2���G*�3�G�4��
+ �G�1�G*�3���G*�2�G�4��. The first term just gives the av-
erage LDOS squared. In the diffusion approximation �as-
sumption �1��, the correlation of two Green’s functions takes
the form �22�

�G�r,x�G*�r�,x��� = �− Im G�r,r���L�r,x��− Im G�x,x��� .

�A1�

In the infinite medium, the field propagator �Im G�r ,r��� os-
cillates algebraically on the scale of the wavelength and de-
cays exponentially beyond the extinction length �. The lad-
der propagator L�r ,x�, however, is very long range and
decays significantly only by absorption. Therefore, for the
purpose of this Rapid Communication we do not have to
discriminate between r and r� or x and x� in L. On long
length scales L obeys a diffusion equation with absorption
time �a,

− D�2L�r,x� +
1

�a
L�r,x� = K	�r − x� , �A2�

where the factor K=lim�a↓0�����x����a�a�−1 is imposed by
the ensemble average of Eq. �2�.1

The variance of the LDOS caused by C1 becomes �see the
upper left diagram in Fig. 1�b��,

Var1���r�� =
�4

c4 lim
�a↓0

�a
2���r��2
 dx L2�r,x�



 d�x�− Im G��x��2. �A3�

The integrand of the second integral is sin2�k�x�exp�−�x
/�� / ��x�2, making the integral converge after typically the
extinction length �, without the need for absorption. The
integrand of the first integral is typically L�x�2

��K2 /D2x2�exp�−2x /�D�a�. The critical contribution of Eq.
�A3� comes from large x, which justifies the diffusion ap-
proximation employed here. The first integral thus scales as
��a. Since �a�1/�a, we conclude that as �a↓0, the C1 con-
tribution to the variance of the LDOS vanishes. All diagrams
with short-range spatial correlations in both the source and
the receiver positions have the same fate, in particular, the
diagram C1� in Fig. 1�b�, that we discuss below.

We now turn to C2, the first non-Gaussian contribution to
the intensity correlation �12�. This is caused by a single
crossing at an arbitrary point s in the medium �see the second
and the third diagrams in the left column of Fig. 1�b��, and is
described mathematically by the “Hikami box” vertex, with a
scalar constant H that needs not be specified here. Two very
similar contributions exist that differ only in selection rules
�20�. The first is short range for x�x�, and equals

�I�r,x�I�r,x���C2a
= H�2���r��2�Im G�x,x���2



 ds L2�r,s���1 · �2�


L�r1 = s,x�L�r2 = s,x� . �A4�

According to Eq. �3� we need the double integral �a
2�dx�dx�

of this object and let �a tend to zero. One integral converges
again rapidly after one extinction length and is finite without
absorption. We shall write �dx��Im G�x ,x���2=V0 and rear-
range expression �A4� to

Var2a���r�� =
�4

c4 HV0���r��2 lim
�a↓0

�a
2
 dx
 ds L2�r,s�


��L�s,x��2

� V0 lim
�a↓0

�a
2
 dx��L�x��2
 ds L2�s� . �A5�

In the second step we conveniently made use of the transla-

1In statistically homogeneous media, ���x�� is independent of x.
In band-gap materials—in principle, beyond the scope of this
work—the average over both disorder and unit cell should appear
here, and is thus still independent of x.
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tional symmetry of the infinite medium. We see that
��L�x� � �1/x2 for large x, making the integral converge
without the need of absorption. Its divergence for x�� is an
artifact of the diffusion approximation, which is not valid at
small length scales, and which we shall ignore. Hence, the
volume integral over x is just finite, without absorption. The
integral over the position s of the Hikami box scales as ��a.
As �a↓0 we conclude that the contribution of the first C2
term to the LDOS, Var2a���r��, vanishes.

The second contribution from C2 is long range as a func-
tion of x−x� �21�. Its expression reads

�I�r,x�I�r,x���C2b
= H�4���r��2���x��2



 ds L2�r,s���1 · �2�


L�r1 = s,x�L�r2 = s,x�� , �A6�

and a little rearranging shows that its contribution to the
variance of the LDOS is

Var2b���r�� � lim
�a↓0

�a
2�
 dx � L�x��2
 ds L2�s� .

�A7�

We note that �Vdx�L�x�=�A�V�dAL�x�, where A�V� is the
surface enclosing the volume V. The surface integral van-
ishes for any closed surface, because L�x� does not depend
on the direction of x. Thus, Var2b���r��=0.

The contribution of the C3 correlation, the origin of uni-
versal conductance fluctuations, can be handled similarly. C3
contains two Hikami boxes �C3 in Fig. 1�b��, but that is a
technical complication, and in just the same way as for C2 it
can be shown to vanish as �a↓0. The diagram C1� in Fig. 1�b�
looks very much like C3 but has actually short spatial range
in both the source and the receiver positions. As a result, it
belongs to the class C1, and its contribution to the variance of
the LDOS vanishes for the same reason as was seen in Eq.
�A3�.

Finally, the C0 correlation is given by �see the lower right
diagram in Fig. 1�b� �15,16�,

�I�r,x�I�r,x���C0
= �I�r,x���I�r,x��� 
 C0, �A8�

with C0 a dimensionless scalar depending on the nature of
the scatterers. For weak white-noise, uncorrelated disorder
C0=� /k� �15,16�. The essential property of C0 that is impor-
tant here is its infinite spatial range caused by the scattering
of waves going to arbitrarily distant x and x� on a common
scatterer in the vicinity of the source at r. Inserting Eq. �A8�
into the expression for the LDOS variance �3� and making
use of Eq. �A1�, we obtain

Var0���r�� = �2C0�2���r��2 lim
�a↓0

�a
2�
 dx���x��L�r,x��2

= C0�2���r��2���x��2 lim
�a↓0

�a
2�2K2�a

2 = C0���r��2.

�A9�

Hence, C0 provides the only surviving contribution to
Var���r��.
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